środowisko naturalne/ekologia nauka/edukacja/szkolenia

Roślinny Facebook! Zespół profesora Stanisława Karpińskiego opisał i wyjaśnił nowy mechanizm komunikowania się roślin.

05.08.2022 | SGGW

Rośliny ostrzegają się  o niebezpieczeństwie. Komunikują się między sobą elektrycznie stykającymi się liśćmi.

Zespół naukowców kierowany przez prof. Stanisława Karpińskiego z Instytutu Biologii SGGW we współpracy z naukowcami z University of Missouri (USA) po raz pierwszy opisał kwantowo-molekularne i fizjologiczne podstawy nieznanej wcześniej formy komunikacji między roślinami oraz uruchamiany w jej wyniku mechanizm, nazwany Sieciową Nabytą Aklimatyzacją (ang. Network Acquired Acclimation, NAA). Wyniki badań przedstawiono w The Plant Cell, najbardziej prestiżowym czasopiśmie publikującym artykuły z zakresu biologii komórki roślin.

Uszkodzony liść (np. przez roślinożerne owady lub nadmiar światła) generuje sygnały elektryczne (ES), które rozprzestrzeniają się na tkanki, liście i organy całej rośliny. W przesyłaniu sygnału elektrycznego pośredniczą zmiany w aktywności kanałów jonowych i towarzyszą im fale reaktywnych form tlenu (ROS) i niefotochemicznego wygaszania (NPQ). Fale te są współzależne i rozchodzą się systemowo w całej roślinie. Proces ten jest niezbędny do zapoczątkowania określonych zmian w ekspresji genów i aklimatyzacji roślin (np. komórkowa pamięć światła). W rezultacie cała zbiorowość roślin, np. na łące wchodzi w stan nabytej aklimatyzacji systemowej (SAA).

W wilgotnych warunkach uszkodzona roślina może bezpośrednio przekazywać sygnał o niebezpieczeństwie innym roślinom, które dotykają jej w obrębie zbiorowiska roślin, na przykład na łące z mniszkiem. Fale ES i ROS służą jako sygnały między roślinami rozchodzące się na liściu i w liściu z prędkością odpowiednio kilku milimetrów na sekundę lub centymetr na minutę. Sygnały te mogą wywoływać zmiany w NPQ, retroaktywnej sygnalizacji chloroplastów, ekspresji genów, fitohormonach, sygnalizacji ROS i odpowiedziach aklimatyzacyjnych w sąsiednich roślinach. Większość z tych złożonych odpowiedzi komunikacyjnych może być również indukowana między dwiema roślinami połączonymi obwodem elektrycznym (miedzianym kablem), co wskazuje, że sygnał elektryczny jest głównym graczem w komunikacji między roślinami. Zespół profesora Karpińskiego odkrył, że ES i ROS indukują nowe zjawisko aklimatyzacji określane jako „Aklimatyzacja nabyta w sieci (NAA)”, niezbędne do indukcji SAA w społeczności roślinnej.

 

 

Już wcześniej znane były mechanizmy przy pomocy których rośliny mogą przesyłać sobie sygnały chemiczne, np. gdy liście z afrykańskich akacji zjadane są przez żyrafy, syntetyzować zaczynają lotne związki chemiczne (np. metylowane jasmoniany). To sygnał dla sąsiadujących roślin i liści, by produkowały gorzkie alkaloidy, substancje zmieniające smak, a przez to zmniejszające ich atrakcyjność jako pożywienie. Wiadomo też było, że np. korzenie sąsiadujących roślin komunikują swoim sąsiadom sygnały o dostępności wody i minerałów za pośrednictwem strzępek grzybów glebowych.

Nasze badania potwierdzają, że powierzchniowe sygnały elektryczne funkcjonują jako łącze komunikacyjne między roślinami, które są zorganizowane jako globalna sieć (społeczność) roślin – tak, jak to James Cameron przedstawił w filmie ‘Awatar’. Działają więc trochę jak Facebook czy Twitter” – mówi profesor Karpiński.

 

Sygnały elektryczne roślin
Sygnały elektryczne roślin
 

Model podsumowujący reakcje nabytej sieciowo aklimatyzacji (ang. Network Acquired Acclimation, NAA) w dwóch różnych roślinach.

Rośliny żyjące w społeczności, takiej jak mniszek lekarski lub Arabidopsis (rzodkiewnik pospolity), mogą wykorzystywać sygnalizację elektryczną (ES) do komunikowania niebezpieczeństw między sobą i indukować ogólnoustrojową aklimatyzację nabytą (SAA) w obrębie jednej rośliny i NAA między roślinami. Liście należące do dwóch różnych roślin (nadajnik i odbiornik) muszą być połączone za pomocą prostego dotyku i wymagana jest przewodność elektryczna (np. wysoka wilgotność względna, reprezentowana przez kroplę wody). Bezpośrednia transmisja ES (nad ziemią, na powierzchni liścia) między uszkodzonym (żółta strzałka) nadajnikiem (lewa komórka) a nieobciążonym odbiornikiem roślina (prawa komórka) jest najprawdopodobniej podobna do potencjału wolnofalowego lub potencjału akcji. ES ma modulowaną amplitudę (współzależne strumienie jonów) i napędza czasoprzestrzenne zmiany w wygaszaniu zaabsorbowanej energii energi (Non-photochemical quenching, NPQ), następującą indukcję fali reaktywnych form tlenu (Reactive Oxygen Species, ROS) i sygnalizację wsteczną (Retrograde signaling RS) zarówno w roślinach nadawczych (Transmiter, T), jak i odbiorczych (Receiver, R). Propagacja fali ROS zależy od specyficznej regulacji przez aktywność RBOHD, dysmutazy ponadtlenkowej (SOD) i katalazy (CAT). Dodatkowo, GRL i MSL10 są zaangażowane w zmiany fal ROS, Ca2+ i ES. Ta autopropagacja fali ROS i NPQ może wystąpić w komórkach odbiorczych. ES, fala ROS i retroaktywne sygnały z chloroplastu do jądra komórkowego (RS) wywołują zmiany w ekspresji genów zarówno w liściach zranionych (T) i w liściach stykających się ze zranionym liściem (w odbiornikach, R). Sygnalizacja zależna od ES; linie niebieskie, sygnalizacja zależna od ROS; zielone linie, sygnalizacja zależna od NPQ; czerwone linie. ZAT12 i APX2, molekularne markery indukcji SAA. Czerwona linia przerywana, hipotetyczne ES indukowane przez prąd dostarczany przez metalowy przewodnik (miedziany drut).

kontakt dla mediów
dr inż. Krzysztof Szwejk
Rzecznik prasowy SGGW, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie
dr inż. Krzysztof Szwejk

rzecznik@sggw.edu.pl

tel: + 48 22 593 19 98

tel: +48 604 534 879

Anna Kiryjow-Radzka
Szkoła Główna Gospodarstwa Wiejskiego w Warszawie
Anna Kiryjow-Radzka

anna_kiryjow@sggw.edu.pl

tel: + 48 22 593 19 97

Tłumaczka języka angielskiego, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie
Marta Hulak

marta_hulak@sggw.edu.pl

Szkoła Główna Gospodarstwa Wiejskiego w Warszawie
Biuro Prasowe

rzecznik@sggw.edu.pl

tel: +48 22 593 19 98

tel: +48 604 534 879

informacje o firmie

dr inż. Krzysztof Szwejk

Rzecznik Prasowy

Biuro Prasowe

ul. Nowoursynowska 166, bud. 10, pok. 54, 02-787 Warszawa

tel. +48 22 593 19 98, +48 22 593 19 97, kom. 604 534 879

 

SZKOŁA GŁÓWNA GOSPODARSTWA WIEJSKIEGO W WARSZAWIE

ul. Nowoursynowska 166, 02-787 Warszawa

www.sggw.edu.pl

 

załączniki

kontakt dla mediów
dr inż. Krzysztof Szwejk
Rzecznik prasowy SGGW, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie
dr inż. Krzysztof Szwejk

rzecznik@sggw.edu.pl

tel: + 48 22 593 19 98

tel: +48 604 534 879

Anna Kiryjow-Radzka
Szkoła Główna Gospodarstwa Wiejskiego w Warszawie
Anna Kiryjow-Radzka

anna_kiryjow@sggw.edu.pl

tel: + 48 22 593 19 97

Tłumaczka języka angielskiego, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie
Marta Hulak

marta_hulak@sggw.edu.pl

Szkoła Główna Gospodarstwa Wiejskiego w Warszawie
Biuro Prasowe

rzecznik@sggw.edu.pl

tel: +48 22 593 19 98

tel: +48 604 534 879

informacje o firmie

dr inż. Krzysztof Szwejk

Rzecznik Prasowy

Biuro Prasowe

ul. Nowoursynowska 166, bud. 10, pok. 54, 02-787 Warszawa

tel. +48 22 593 19 98, +48 22 593 19 97, kom. 604 534 879

 

SZKOŁA GŁÓWNA GOSPODARSTWA WIEJSKIEGO W WARSZAWIE

ul. Nowoursynowska 166, 02-787 Warszawa

www.sggw.edu.pl